RowSourceType Property (User-Defined Function) - Code Argument Values [Access 2003 VBA Language Reference]
2 out of 3 rated this helpful - Rate this topic
The Visual Basic function you create must accept five arguments. The first argument must be declared as a control and the remaining arguments as Variants. The function itself must return a Variant.
Function functionname (fld As Control, id As Variant, row As Variant, col As Variant, code As Variant) As Variant
The Function procedure has the following five required arguments.
	Argument
	Description

	fld
	A control variable that refers to the list box or combo box being filled.

	id
	A unique value that identifies the control being filled. This is useful when you want to use the same user-defined function for more than one list box or combo box and must distinguish between them. (The example sets this variable to the value of the Timer function.)

	row
	The row being filled (zero-based).

	col
	The column being filled (zero-based).

	code
	An intrinsic constant that specifies the kind of information being requested.

Note Because Microsoft Access calls a user-defined function several times to insert items into a list, often you must preserve information from call to call. The best way to do this is to use Static variables.
Microsoft Access calls the user-defined function by repeatedly using different values in the code argument to specify the information it needs. The code argument can use the following intrinsic constants.
	Constant
	Meaning
	Function returns

	acLBInitialize
	Initialize
	Nonzero if the function can fill the list; False (0) or Null otherwise.

	acLBOpen
	Open
	Nonzero ID value if the function can fill the list; False or Null otherwise.

	acLBGetRowCount
	Number of rows
	Number of rows in the list (can be zero); –1 if unknown.

	acLBGetColumnCount
	Number of columns
	Number of columns in the list (can't be zero); must match the property sheet value.

	acLBGetColumnWidth
	Column width
	Width (in twips) of the column specified by the col argument; –1 to use the default width.

	acLBGetValue
	List entry
	List entry to be displayed in the row and column specified by the row and col arguments.

	acLBGetFormat
	Format string
	Format string to be used to format the list entry displayed in the row and column specified by the row and col arguments; –1 to use the default format.

	acLBEnd
	End (the last call to a user-defined function always uses this value)
	Nothing.

	acLBClose
	(Not used)
	Not used.

Microsoft Access calls your user-defined function once for acLBInitialize, acLBOpen, acLBGetRowCount, and acLBGetColumnCount. It initializes the user-defined function, opens the query, and determines the number of rows and columns.
Microsoft Access calls your user-defined function twice for acLBGetColumnWidth — once to determine the total width of the list box or combo box and a second time to set the column width.
The number of times your user-defined function is called for acLBGetValue and acLBGetFormat to get list entries and to format strings varies depending on the number of entries, the user's scrolling, and other factors.
Microsoft Access calls the user-defined function for acLBEnd when the form is closed or each time the list box or combo box is queried.
Whenever a particular value (such as the number of columns) is required, returning Null or any invalid value causes Microsoft Access to stop calling the user-defined function with that code.
Tip

RowSourceType
[bookmark: #example]Example
The following user-defined function returns a list of the next four Mondays following today's date. To call this function from a list box control, enter ListMondays as the RowSourceType property setting and leave the RowSource property setting blank.
Function ListMondays(fld As Control,id As Variant, _
 row As Variant,col As Variant,code As Variant) _
 As Variant
 Dim intOffset As Integer
 Select Case code
 Case acLBInitialize ' Initialize.
 ListMondays = True
 Case acLBOpen ' Open.
 ListMondays = Timer ' Unique ID.
 Case acLBGetRowCount ' Get rows.
 ListMondays = 4
 Case acLBGetColumnCount ' Get columns.
 ListMondays = 1
 Case acLBGetColumnWidth ' Get column width.
 ListMondays = -1 ' Use default width.
 Case acLBGetValue ' Get the data.
 intOffset = Abs((9 - Weekday(Now))Mod 7)
 ListMondays = Format(Now() + _
 intOffset + 7 * row,"mmmm d")
 End Select
End Function
		
The next example uses a static array to store the names of the databases in the current directory. To call this function, enter ListMDBs as the RowSourceType property setting and leave the RowSource property setting blank.
Function ListMDBs(fld As Control, id As Variant, _
 row As Variant, col As Variant, _
 code As Variant) As Variant
 Static dbs(127) As String, Entries As Integer
 Dim ReturnVal As Variant
 ReturnVal = Null
 Select Case code
 Case acLBInitialize ' Initialize.
 Entries = 0
 dbs(Entries) = Dir("*.MDB")
 Do Until dbs(Entries) = "" Or Entries >= 127
 Entries = Entries+1
 dbs(Entries) = Dir
 Loop
 ReturnVal = Entries
 Case acLBOpen ' Open.
 ' Generate unique ID for control.
 ReturnVal = Timer
 Case acLBGetRowCount ' Get number of rows.
 ReturnVal = Entries
 Case acLBGetColumnCount ' Get number of columns.
 ReturnVal = 1
 Case acLBGetColumnWidth ' Column width.
 ' -1 forces use of default width.
 ReturnVal = -1
 Case acLBGetValue ' Get data.
 ReturnVal = dbs(row)
 Case acLBEnd ' End.
 Erase dbs
 End Select
 ListMDBs = ReturnVal
End Function
[bookmark: _GoBack]
